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in Hippocampal Expression of Cyclooxygenase-2 (COX-2) 
and Phosphorylated ERK Signaling (P-ERK) in Male Rats 
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ABSTRACT 
Background: Central administration of STZ (Streptozotocin) induces 
oxidative damage, neuroinflammation, cholinergic deficits, β-amyloid and 
tau protein accumulation in the brain. Abscisic acid (ABA) as a 
phytohormone is produced in a variety of animal tissues, including brain. 
Recently data show it has involved in a wide spectrum of activities in CNS 
including, learning and memory and pain regulation.  
Objectives: Here, the alterative effects of abscisic acid and possibility of 
involving PKA and PPARβ/δ receptors, on Streptozotocin-induced changes 
in hippocampal expression of cyclooxygenase-2 (COX-2) and ERK signaling 
(p-ERK) in male Wister rats was investigated. 
Materials and Methods: STZ was injected intracerebroventricularly (i.c.v.) 
(3 mg/kg), ABA was administrated alone (10 μg/rat, i.c.v.) or accompanied 
with PPARβ/δ receptor antagonist (GSK0660, 80 nM/rat) or selective 
inhibitor of PKA (H89, 80nM/rat) for 14 days. Western blot analysis was used 
to indicate changes in hippocampal COX-2 and p-ERK expression.  
Results: The results showed that STZ produced a significant increase in 
hippocampal expression of COX-2 and a decrease in expression of p-ERK. 
ABA significantly prevented the effects of STZ. However, ABA effects were 
blocked by PPARβ/δ receptor antagonist (GSK0660) and selective inhibitor 
of PKA (H89).  
Conclusions: It seems that the ABA moderates STZ-induced neuronal 
inflammation and ERK signaling deficiency by PPARβ/δ receptor and PKA 
signaling. 
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INTRODUCTION 

Streptozocin (STZ) is a drug and chemical agent 
for induction of significant metabolic changes, 
with source of Streptomyces acromogenes. It is 
an acceptable agent for induction of diabetes and 
Alzheimer's disease in rodents (1). Streptozocin 
has also toxic potential in many cells and tissues 
(2). Intracerebroventricular (icv) injection of 

streptozotocin due to association with the 
development of an insulin-resistant brain state, 
induction of neuroinflammation changes, 
oxidative stress, producing learning and memory 
and also cognitive deficits is a acceptable method 
for induction of malfunction in the CNS (3-5). 
Regarding the STZ effects, it seems that brain 
cholinergic system also affected by STZ (6). 
Streptozotocin (STZ) is a glucosamine-
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nitrosourea compound that was originally 
identified as an antibiotic. It is toxic to beta cells 
of pancreas and usually transported through 
glucose transporter 2 and commonly used to 
induce experimental diabetes in animals. 
Investigations show that ICV/IP (intraperitoneal) 
injection of STZ produces significant elevation in 
cerebral aggregation of Aβ fragments, total tau 
protein, and Aβ deposits. In other words, STZ in 
a rodent’s brain by induction of many 
biochemical alterations is considered to be a valid 
experimental model for neurodegenerative 
disease. Recent data indicate that STZ can 
produce Alzheimer like disease pathological 
alteration in amyloid precursor protein (APP), 
glucose metabolism, insulin signaling, 
cholinergic deficits, oxidative stress, 
neuroinflammation, synaptic function, protein 
kinases, and apoptosis (7-9).  

Neuroinflammatory responses happening in 
the central nervous system (CNS) are tightly 
linked to the pathways leading to neuronal cell 
death in Alzheimer's disease (AD) (10). It has 
been reported that inflammatory activation of 
glial cells results in cognitive deficit and neuronal 
death (11). Cyclooxygenase-2 (COX-2) is an 
inducible isoform of the cyclooxygenase enzyme 
that plays an essential role in initiation and 
progression of inflammation (12). COX2 is 
expressed in many brain diseases, for example 
AD, depression and global ischemia (13-15). 
Clinical trials have shown that long-term use of 
COX inhibitors can decrease the incidence of AD 
by affecting inflammatory response, neuronal loss 
and behavioral changes (16, 17). 

Extracellular signal-regulated kinase (ERK), a 
type of MAPK, has been involved as a critical 
component in a large number of signaling systems 
implicated in hippocampal-dependent memory 
formation and synaptic plasticity (18). The 
inhibition of ERK phosphorylation leads to 
cognitive deficits (19) and previous reports found 
decreased levels of ERK protein and mRNA in 
AD hippocampus compared with controls (20, 
21).  

Recently, it has been demonstrated that 
physiological functions of ABA are not restricted 
to plants and it has a crucial role in animals (22). 
In addition, ABA is involved in some cell 
functions such as inflammatory and immune 

responses (23, 24), insulin sensitization and 
glucose homeostasis (25, 26), and regulates stem 
cell expansion and stimulation (27). 

ABA improves spatial and passive avoidance 
learning and memory in rats (28). Moreover, it 
shows anti-anxiety effects (29) and a dose-
dependency manner inhibition in spatial and 
passive avoidance learning and memory deficits 
in STZ rats (30). 

Since despite the well-known anti-
inflammation effects of ABA, its effect on 
experimental STZ-induced inflammation and 
ERK signaling pathways in the hippocampus of 
rats has not yet been clarified. In the present study 
we investigated the effect of central 
administration of ABA on modulation of STZ-
induced inflammation and ERK signaling 
pathways in the rat's hippocampus, with emphasis 
on alterations in hippocampal expression of 
COX-2 and p-ERK. 

Materials and methods 

Animals 

Adult male Wistar rats (230–270 gr total rat 49 
and 7 per group) were used. The animals were 
obtained from the Shahid Bahonar University of 
Kerman Animal House. Food and water were 
available ad libitum. The animals were housed 
under a 12 h light/dark cycle in controlled 
conditions with a temperature of 22 ±2 °C. All 
experimental procedures were approved by the 
Animal Research Ethics Committee of the 
Kerman Neuroscience Research Center, Kerman, 
Iran (EC: 96/17)  and confirmed to the standard 
ethical guidelines (NIH, publication no. 85-23, 
revised 1985). 
Surgery  
For central injection of drugs, anesthetized rats 
with ketamine and xylazine (60 and 10 mg/kg, 
respectively) were implanted with guide cannulas 
stereotaxically (Stoelting, USA). Guide cannulas 
(22-gauge stainless steel needle) were implanted 
and aimed bilaterally into right and left ventricles. 
The intended coordinates for the left and right 
ventricles were AP=1.6 mm from Bregma, ML= 
±0.8 from the midline, and DV=3.4 mm from the 
skull surface (31). Guide cannulas were fixed to 
the skull through two stainless steel screws and 
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acrylic dental cement. Then, the animals were 
housed in individual cages and had a one-week 
recovery period before drug injection. Stereotaxic 
surgery was performed, and after the recovery 
period (1 week) drugs were injected into the 
lateral ventricle with 15-minute intervals. The 
animals were killed just after the behavioral test  
,the data were published (32), the brains were 
removed and fixed in formalin for 2 days and the 
correct placement of the cannula was confirmed 
by histological examination. If cannula was not 
fixed in the accurate place, the rat's data were 
omitted from the analysis. 
Drugs 

STZ, (±)-cis,trans-ABA,  H-89 dihydrochloride 
hydrate(PKA inhibitor), and GSK0660(PPARβ/δ 
receptor antagonist) were purchased from Sigma-
Aldrich, USA.  STZ was dissolved in the normal 
saline solution (0.9% w/v sodium chloride), ABA 
was dissolved in the saline solution and dimethyl 
sulfoxide (DMSO) at a ratio of 2:1 (v/v). H-89 
and GSK0660 were dissolved in DMSO (0.1% in 
final) and diluted with saline solution. 
Microinjection 

Central injection of drugs was performed through 
a 27-gauge internal cannula connected via 
polyethylene tubing to a 10 μl Hamilton syringe. 
The needle was left in the place for 1 min before 
it was slowly retracted. The injection needle was 
inserted 1 mm beyond the tip of the guide 
cannula. 
Experimental design 

The animals were randomly divided into seven 
experimental groups (n = 7): 

Control group which received no injection; 
STZ sham group received STZ vehicle; ABA 
sham received ABA vehicle ; STZ group that 
received STZ (3 mg/kg, body weight in saline, 5 
μL/I.C.V injection); STZ + ABA-treated groups 
received STZ and 15 minutes later received ABA 
(10μg/rat, 2 μL/injection from days 1-14); 
STZ+ABA+GSK which received STZ, ABA and 
GSK0660 (GSK, 80 nM/rat, 2 μL/injection from 
days 1 to 14); STZ+ABA+H89 which received 
STZ, ABA and H89 (H89, 80 nM/rat, 2 
μL/injection from days 1 to 14). The doses of 
drugs were selected according to the previous 
studies (29, 33-35).The experiment was 

performed between 9.00 a.m. to 2.00 p.m. at 
standard laboratory conditions, such as ambient 
temperature of 25±21C and sound proof room.  
Western blot analysis 

Rat hippocampal tissues were lysed in RIPA 
buffer containing 10 mM Tris–HCl, pH 7.4, 150 
mM NaCl, 1 Mm ethylenediaminetetraacetic 
acid, 0.1% sodium dodecyl sulfate, 0.1% Na-
deoxycholate, 1% NP-401% NP-40 and protease 
inhibitors (1 mM phenylmethyl  sulfonyl fluoride, 
2.5 μg/ ml of leupeptin, 10 μg/ml of aprotinin) and 
1 mM sodium orthovanadate. Equal amounts (40 
μg) of protein were electrophoresed on 9% 
sodium dodecyl sulfate polyacrylamide gel 
electrophoresis (SDS-PAGE) gel and transferred 
to polyvinylidene  difluoride (PVDF) membrane 
(Roche). Total protein concentration was 
determined by Bradford method. After blocking 
with 5% non-fat dried milk in Tris-buffered saline 
with Tween 20 (blocking buffer, TBS-T, 150mM 
NaCl, 20mM Tris–HCl, pH 7.5, 0.1% Tween 20), 
the membranes were incubated with primary 
COX-2 and p-ERK antibody (1:1000) overnight 
at 4 °C. The primary antibody was detected with 
goat antimouse horseradish peroxidase-
conjugated secondary antibody (1:15,000, Santa 
Cruz Biotechnology, USA). The antibody-antigen 
complexes were identified using the ECL system 
and exposed to Lumi-Film chemiluminescent 
detection film (Roche, Germany). Lab Works 
analyzing software (UVP, UK) was used to 
evaluate the intensity of the blotting bands. β-
actin (1:10,000) was used as the loading control. 
The expression values were presented as tested 
proteins / β-actin ratio for each rat. 
Statistical analysis 

Data are presented as means ± standard error of 
the mean. Statistical analysis comprised one-way 
analysis of variance followed by post-hoc 
Tukey’s test. The p-value < 0.05 was considered 
statistically significant. 

RESULTS 

It should be noted that because the behavioral data 
showed that the solvents had no effect on the 
behavior of the animals (32) they were not 
evaluated at the molecular analysis. 
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Immunoblot analysis showed significant 
differences in hippocampal COX-2 protein levels 
among the different experimental groups. As 
shown in Figure 1, COX-2 induction in STZ-
treated group (p < 0.01) was significantly 
increased compared with the control group; while 
pretreatment with ABA (10μg/rat) diminished the 
effect  of STZ on COX-2 expression (p < 0.05). 
However, GSK and H89 could completely inhibit 
the positive effect of ABA (P<0.05) (Figure 1). 

 
Figure 1. Cox2 protein levels in hippocampus of 
rats in experimental groups. One-way analysis of 
variance was used. Values represent mean ± 
SEM. **P < 0.01 versus control group, #P < 0.05 
versus STZ group, +P < 0.05 versus STZ+ABA 
group. 

Figure 2 shows that following administration 
of STZ, hippocampal levels of p-ERK were 
significantly decreased (p < 0.01); while 
pretreatment with ABA (10μg/rat) reduced the 
effects of STZ on p-ERK expression (p < 0.01). 
However, ABA- induced p-ERK protein up-
regulation was prevented after GSK or H89 
treatment (p<0.05) (Figure2).  

 
Figure 2. Phosphorylated ERK levels in 
hippocampus of rats in experimental groups. One-

way analysis of variance was used. Values 
represent mean ± SEM. **P < 0.01 versus control 
group, ##P < 0.01 versus STZ group, +P < 0.05 
versus STZ+ABA group. 

DISCUSSION 

The present study investigated the possible 
protective effect of ABA on STZ -induced 
alteration in hippocampal expression of COX-2 
and p-ER. Here also the role of PPARβ/δ receptor 
antagonist (GSK0660) and selective inhibitor of 
PKA (H89) in the effects were assessed. Data 
showed that ABA in lateral ventricle of rats 
moderates STZ-induced neuronal inflammation 
and ERK signaling deficiency by PPARβ/δ 
receptor and PKA signaling. 

Previous reports show that the Central STZ 
typically produces prolonged impairment of 
glucose/energy metabolism, neuroinflammation, 
and oxidative stress in the brain (8).In line with 
the previous data our finding also showed STZ-
induced elevation in inflammation of 
hippocampus. 

Also, high levels of COX-2 and low levels of 
p-ERK proteins in the hippocampus were 
detected following STZ-induced Alzheimer's 
disease model. Cognitive impairment after STZ 
administration is induced by the degradation of 
phospholipids, which results in increases in the 
free fatty acid arachidonic acid. COX-2 is a rate-
limiting enzyme in the metabolism of arachidonic 
acid to prostanoids, particularly prostaglandins 
(PGs), which significantly contribute to neuro-
inflammation with oxidative stress (36). 
Interestingly, central administration of ABA was 
able to attenuate the effects of STZ on COX-2 
induction and increased the levels of p-ERK 
protein.   

A higher level of expression in COX-2 mRNA 
and protein was found in the brains of AD models 
(37, 38). It has been demonstrated that COX-2 
plays an essential role in pathological process of 
AD and the inhibition of COX-2 is a potential 
neuroprotective strategy for limiting the 
progression of the disease through its action on 
the downstream effects of the insulin signaling 
pathway inhibiting neuroinflammation and 
oxidative stress (15, 17, 39).     

In vivo studies have revealed an anti-
inflammatory capacity for ABA in animal models 
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of colitis (40) and pulmonary inflammation (41). 
Such beneficial effects is mediated generally by 
decrease in inflammatory leukocyte infiltration 
and modulation of adhesion molecules expression 
(40, 41). It has been shown that ABA attenuates 
TNF α expression and macrophages infiltration in 
obesity-related inflammation in db/db mice (42). 
Furthermore, ABA significantly increases the 
immune regulatory and anti-inflammatory 
cytokine IL-10 expression in mice (41). 

Moreover, in this study we observed that the 
expressions of COX-2 were significantly 
increased in STZ-treated rats and decreased 
strongly by ABA (10μg/rat). It seems that ABA 
induces an anti-inflammatory role by diminishing 
COX-2 expression in STZ-treated rats.  

In addition, our data showed that central 
administration of STZ reduces p-ERK protein 
expression in the hippocampus. This result is 
supported by the previous studies that showed 
down-expression of hippocampal ERK 
phosphorylation causes cognitive impairments 
(19). 

Recent studies have shown that Aβ oligomers 
elevation post PTZ -treatment inhibits ERK 
activation and subsequently CREB in human 
neuroblastoma cells and primary neurons and 
beta-amyloid-induced cell death is accompanied 
by ERK suppression (43, 44). In the Tg2576 
model of AD, ERK signaling is dysregulated and 
unable to correctly function in new memory 
formation (45). It has been shown that ABA can 
bind to a membrane G protein complex receptor, 
which leads to phosphorylation and activation of 
ADP-ribosyl cyclase (ADPRC), overproduction 
of the calcium mobilizer cyclic ADP-ribose 
(cADPR), and consequent increase of the 
intracellular calcium concentration (22, 23, 46). 

Recently reported that ABA has precognitive 
and anti-anxiety effects by extracellular calcium 
influx through L-type calcium channels, 
intracellular calcium currents and extracellular 
signal-regulated kinase signaling (p-ERK) (35). 
In addition, recent studies have shown that ABA 
also acts as an activator of the cAMP/PKA 
signaling pathway (26, 47).  

The data indicated that the expression of p-
ERK was significantly decreased in STZ-treated 
rats and the effect was prevented by ABA 
(10μg/rat). Although ABA signaling pathway is 

not fully elucidated, actually ABA in animals and 
plants uses a wide spectrum of signaling 
pathways. Its pathway is highly conserved across 
species and it has been known as a potent agonist 
for lanthionine synthetase C-like 2 receptor and 
peroxisome proliferator-activated receptors 
family member (PPARs) (48). ABA stimulates 
Ca2+ release by activation of downstream targets 
including phospholipase C / protein kinase C 
(PLCPKC) cascade and adenylate cyclase cAMP-
dependent protein kinase A (PKA) pathway (49). 
Moreover, the data elucidated, the ABA 
preventive effect on STZ-induced alteration in 
hippocampal expression of COX-2 and p-ERK 
involved PPARβ/δ receptor and p- PKA signaling 
systems. 

In conclusion, the results provided evidence 
that central injection of ABA can attenuate STZ-
induced neuronal inflammation and MAPK 
signaling deficiency in the hippocampus, mainly 
through attenuation of STZ-induced COX-2 and 
an increase of p-ERK expressions. However, 
further studies are needed to explain the detailed 
role(s) and exact mechanism(s) of ABA in this 
regard. As a limitation, since the relevant 
behavioral data have already been published, they 
could not be presented and discussed here . 
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